Aliases: C23⋊2D4⋊C3, (C22×C4).3A4, C23.14(C2×A4), C23.3A4⋊1C2, C22.2(C4.A4), C2.2(C23.A4), C2.C42.2C6, SmallGroup(192,194)
Series: Derived ►Chief ►Lower central ►Upper central
C2.C42 — C23⋊2D4⋊C3 |
Generators and relations for C23⋊2D4⋊C3
G = < a,b,c,d,e,f | a2=b2=c2=d4=e2=f3=1, eae=ab=ba, ac=ca, dad-1=abc, faf-1=ec=ce, bc=cb, bd=db, be=eb, fbf-1=d2, cd=dc, fcf-1=b, ede=d-1, fdf-1=abcd-1e, fef-1=cde >
Subgroups: 379 in 67 conjugacy classes, 9 normal (all characteristic)
C1, C2, C2, C3, C4, C22, C22, C6, C2×C4, D4, C23, C23, C12, A4, C22⋊C4, C22×C4, C22×C4, C2×D4, C24, C2×A4, C2.C42, C2×C22⋊C4, C22×D4, C4×A4, C23⋊2D4, C23.3A4, C23⋊2D4⋊C3
Quotients: C1, C2, C3, C6, A4, C2×A4, C4.A4, C23.A4, C23⋊2D4⋊C3
Character table of C23⋊2D4⋊C3
class | 1 | 2A | 2B | 2C | 2D | 2E | 3A | 3B | 4A | 4B | 4C | 4D | 6A | 6B | 12A | 12B | 12C | 12D | |
size | 1 | 1 | 3 | 3 | 12 | 12 | 16 | 16 | 4 | 4 | 12 | 12 | 16 | 16 | 16 | 16 | 16 | 16 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 3 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | ζ32 | ζ3 | -1 | -1 | 1 | 1 | ζ3 | ζ32 | ζ6 | ζ6 | ζ65 | ζ65 | linear of order 6 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | ζ3 | ζ32 | -1 | -1 | 1 | 1 | ζ32 | ζ3 | ζ65 | ζ65 | ζ6 | ζ6 | linear of order 6 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 3 |
ρ7 | 2 | -2 | 2 | -2 | 0 | 0 | -1 | -1 | -2i | 2i | 0 | 0 | 1 | 1 | i | -i | i | -i | complex lifted from C4.A4 |
ρ8 | 2 | -2 | 2 | -2 | 0 | 0 | -1 | -1 | 2i | -2i | 0 | 0 | 1 | 1 | -i | i | -i | i | complex lifted from C4.A4 |
ρ9 | 2 | -2 | 2 | -2 | 0 | 0 | ζ6 | ζ65 | -2i | 2i | 0 | 0 | ζ3 | ζ32 | ζ4ζ32 | ζ43ζ32 | ζ4ζ3 | ζ43ζ3 | complex lifted from C4.A4 |
ρ10 | 2 | -2 | 2 | -2 | 0 | 0 | ζ6 | ζ65 | 2i | -2i | 0 | 0 | ζ3 | ζ32 | ζ43ζ32 | ζ4ζ32 | ζ43ζ3 | ζ4ζ3 | complex lifted from C4.A4 |
ρ11 | 2 | -2 | 2 | -2 | 0 | 0 | ζ65 | ζ6 | 2i | -2i | 0 | 0 | ζ32 | ζ3 | ζ43ζ3 | ζ4ζ3 | ζ43ζ32 | ζ4ζ32 | complex lifted from C4.A4 |
ρ12 | 2 | -2 | 2 | -2 | 0 | 0 | ζ65 | ζ6 | -2i | 2i | 0 | 0 | ζ32 | ζ3 | ζ4ζ3 | ζ43ζ3 | ζ4ζ32 | ζ43ζ32 | complex lifted from C4.A4 |
ρ13 | 3 | 3 | 3 | 3 | 1 | 1 | 0 | 0 | -3 | -3 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ14 | 3 | 3 | 3 | 3 | -1 | -1 | 0 | 0 | 3 | 3 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A4 |
ρ15 | 6 | -6 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ16 | 6 | 6 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23.A4 |
ρ17 | 6 | -6 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ18 | 6 | 6 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23.A4 |
(1 3)(2 4)(6 8)(9 11)(10 12)
(1 2)(3 4)
(5 7)(6 8)
(3 4)(5 6)(7 8)(9 10 11 12)
(3 4)(9 10)(11 12)
(1 7 11)(2 5 9)(3 6 12)(4 8 10)
G:=sub<Sym(12)| (1,3)(2,4)(6,8)(9,11)(10,12), (1,2)(3,4), (5,7)(6,8), (3,4)(5,6)(7,8)(9,10,11,12), (3,4)(9,10)(11,12), (1,7,11)(2,5,9)(3,6,12)(4,8,10)>;
G:=Group( (1,3)(2,4)(6,8)(9,11)(10,12), (1,2)(3,4), (5,7)(6,8), (3,4)(5,6)(7,8)(9,10,11,12), (3,4)(9,10)(11,12), (1,7,11)(2,5,9)(3,6,12)(4,8,10) );
G=PermutationGroup([[(1,3),(2,4),(6,8),(9,11),(10,12)], [(1,2),(3,4)], [(5,7),(6,8)], [(3,4),(5,6),(7,8),(9,10,11,12)], [(3,4),(9,10),(11,12)], [(1,7,11),(2,5,9),(3,6,12),(4,8,10)]])
G:=TransitiveGroup(12,104);
(1 10)(2 8)(3 9)(4 7)(5 13)(6 16)(11 15)(12 14)(17 23)(18 24)(19 21)(20 22)
(1 3)(2 4)(7 8)(9 10)
(5 11)(6 12)(13 15)(14 16)
(5 6)(7 8)(9 10)(11 12)(13 14)(15 16)(17 18 19 20)(21 22 23 24)
(1 2)(3 4)(5 15)(6 16)(7 10)(8 9)(11 13)(12 14)(17 24)(18 23)(19 22)(20 21)
(1 16 18)(2 6 22)(3 14 20)(4 12 24)(5 21 9)(7 15 17)(8 13 19)(10 11 23)
G:=sub<Sym(24)| (1,10)(2,8)(3,9)(4,7)(5,13)(6,16)(11,15)(12,14)(17,23)(18,24)(19,21)(20,22), (1,3)(2,4)(7,8)(9,10), (5,11)(6,12)(13,15)(14,16), (5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18,19,20)(21,22,23,24), (1,2)(3,4)(5,15)(6,16)(7,10)(8,9)(11,13)(12,14)(17,24)(18,23)(19,22)(20,21), (1,16,18)(2,6,22)(3,14,20)(4,12,24)(5,21,9)(7,15,17)(8,13,19)(10,11,23)>;
G:=Group( (1,10)(2,8)(3,9)(4,7)(5,13)(6,16)(11,15)(12,14)(17,23)(18,24)(19,21)(20,22), (1,3)(2,4)(7,8)(9,10), (5,11)(6,12)(13,15)(14,16), (5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18,19,20)(21,22,23,24), (1,2)(3,4)(5,15)(6,16)(7,10)(8,9)(11,13)(12,14)(17,24)(18,23)(19,22)(20,21), (1,16,18)(2,6,22)(3,14,20)(4,12,24)(5,21,9)(7,15,17)(8,13,19)(10,11,23) );
G=PermutationGroup([[(1,10),(2,8),(3,9),(4,7),(5,13),(6,16),(11,15),(12,14),(17,23),(18,24),(19,21),(20,22)], [(1,3),(2,4),(7,8),(9,10)], [(5,11),(6,12),(13,15),(14,16)], [(5,6),(7,8),(9,10),(11,12),(13,14),(15,16),(17,18,19,20),(21,22,23,24)], [(1,2),(3,4),(5,15),(6,16),(7,10),(8,9),(11,13),(12,14),(17,24),(18,23),(19,22),(20,21)], [(1,16,18),(2,6,22),(3,14,20),(4,12,24),(5,21,9),(7,15,17),(8,13,19),(10,11,23)]])
G:=TransitiveGroup(24,496);
(1 4)(2 5)(3 10)(6 9)(7 16)(8 14)(11 15)(12 13)(17 19)(18 20)(21 23)(22 24)
(1 9)(2 10)(3 5)(4 6)
(7 12)(8 11)(13 16)(14 15)
(1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14)(15 16)(17 18 19 20)(21 22 23 24)
(1 2)(3 4)(5 6)(9 10)(17 24)(18 23)(19 22)(20 21)
(1 15 18)(2 11 22)(3 12 17)(4 13 23)(5 7 19)(6 16 21)(8 24 10)(9 14 20)
G:=sub<Sym(24)| (1,4)(2,5)(3,10)(6,9)(7,16)(8,14)(11,15)(12,13)(17,19)(18,20)(21,23)(22,24), (1,9)(2,10)(3,5)(4,6), (7,12)(8,11)(13,16)(14,15), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18,19,20)(21,22,23,24), (1,2)(3,4)(5,6)(9,10)(17,24)(18,23)(19,22)(20,21), (1,15,18)(2,11,22)(3,12,17)(4,13,23)(5,7,19)(6,16,21)(8,24,10)(9,14,20)>;
G:=Group( (1,4)(2,5)(3,10)(6,9)(7,16)(8,14)(11,15)(12,13)(17,19)(18,20)(21,23)(22,24), (1,9)(2,10)(3,5)(4,6), (7,12)(8,11)(13,16)(14,15), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18,19,20)(21,22,23,24), (1,2)(3,4)(5,6)(9,10)(17,24)(18,23)(19,22)(20,21), (1,15,18)(2,11,22)(3,12,17)(4,13,23)(5,7,19)(6,16,21)(8,24,10)(9,14,20) );
G=PermutationGroup([[(1,4),(2,5),(3,10),(6,9),(7,16),(8,14),(11,15),(12,13),(17,19),(18,20),(21,23),(22,24)], [(1,9),(2,10),(3,5),(4,6)], [(7,12),(8,11),(13,16),(14,15)], [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14),(15,16),(17,18,19,20),(21,22,23,24)], [(1,2),(3,4),(5,6),(9,10),(17,24),(18,23),(19,22),(20,21)], [(1,15,18),(2,11,22),(3,12,17),(4,13,23),(5,7,19),(6,16,21),(8,24,10),(9,14,20)]])
G:=TransitiveGroup(24,497);
(1 12)(3 15)(4 10)(5 16)(6 9)(7 14)(17 24)(18 21)(19 22)(20 23)
(1 12)(2 11)(7 14)(8 13)
(3 6)(4 5)(9 15)(10 16)
(1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14)(15 16)(17 18 19 20)(21 22 23 24)
(1 8)(2 7)(3 4)(5 6)(9 16)(10 15)(11 14)(12 13)(18 20)(21 23)
(1 4 20)(2 15 22)(3 21 7)(5 18 12)(6 23 14)(8 10 17)(9 24 11)(13 16 19)
G:=sub<Sym(24)| (1,12)(3,15)(4,10)(5,16)(6,9)(7,14)(17,24)(18,21)(19,22)(20,23), (1,12)(2,11)(7,14)(8,13), (3,6)(4,5)(9,15)(10,16), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18,19,20)(21,22,23,24), (1,8)(2,7)(3,4)(5,6)(9,16)(10,15)(11,14)(12,13)(18,20)(21,23), (1,4,20)(2,15,22)(3,21,7)(5,18,12)(6,23,14)(8,10,17)(9,24,11)(13,16,19)>;
G:=Group( (1,12)(3,15)(4,10)(5,16)(6,9)(7,14)(17,24)(18,21)(19,22)(20,23), (1,12)(2,11)(7,14)(8,13), (3,6)(4,5)(9,15)(10,16), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18,19,20)(21,22,23,24), (1,8)(2,7)(3,4)(5,6)(9,16)(10,15)(11,14)(12,13)(18,20)(21,23), (1,4,20)(2,15,22)(3,21,7)(5,18,12)(6,23,14)(8,10,17)(9,24,11)(13,16,19) );
G=PermutationGroup([[(1,12),(3,15),(4,10),(5,16),(6,9),(7,14),(17,24),(18,21),(19,22),(20,23)], [(1,12),(2,11),(7,14),(8,13)], [(3,6),(4,5),(9,15),(10,16)], [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14),(15,16),(17,18,19,20),(21,22,23,24)], [(1,8),(2,7),(3,4),(5,6),(9,16),(10,15),(11,14),(12,13),(18,20),(21,23)], [(1,4,20),(2,15,22),(3,21,7),(5,18,12),(6,23,14),(8,10,17),(9,24,11),(13,16,19)]])
G:=TransitiveGroup(24,498);
(1 5)(2 6)(3 7)(4 8)(10 17)(12 19)(13 24)(15 22)
(1 4)(2 3)(5 8)(6 7)(9 20)(10 17)(11 18)(12 19)
(1 3)(2 4)(5 7)(6 8)(13 24)(14 21)(15 22)(16 23)
(5 6)(7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 2)(3 4)(5 7)(6 8)(9 19)(10 18)(11 17)(12 20)(13 24)(14 23)(15 22)(16 21)
(1 22 9)(2 13 18)(3 24 20)(4 15 11)(5 21 19)(6 16 10)(7 23 12)(8 14 17)
G:=sub<Sym(24)| (1,5)(2,6)(3,7)(4,8)(10,17)(12,19)(13,24)(15,22), (1,4)(2,3)(5,8)(6,7)(9,20)(10,17)(11,18)(12,19), (1,3)(2,4)(5,7)(6,8)(13,24)(14,21)(15,22)(16,23), (5,6)(7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,2)(3,4)(5,7)(6,8)(9,19)(10,18)(11,17)(12,20)(13,24)(14,23)(15,22)(16,21), (1,22,9)(2,13,18)(3,24,20)(4,15,11)(5,21,19)(6,16,10)(7,23,12)(8,14,17)>;
G:=Group( (1,5)(2,6)(3,7)(4,8)(10,17)(12,19)(13,24)(15,22), (1,4)(2,3)(5,8)(6,7)(9,20)(10,17)(11,18)(12,19), (1,3)(2,4)(5,7)(6,8)(13,24)(14,21)(15,22)(16,23), (5,6)(7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,2)(3,4)(5,7)(6,8)(9,19)(10,18)(11,17)(12,20)(13,24)(14,23)(15,22)(16,21), (1,22,9)(2,13,18)(3,24,20)(4,15,11)(5,21,19)(6,16,10)(7,23,12)(8,14,17) );
G=PermutationGroup([[(1,5),(2,6),(3,7),(4,8),(10,17),(12,19),(13,24),(15,22)], [(1,4),(2,3),(5,8),(6,7),(9,20),(10,17),(11,18),(12,19)], [(1,3),(2,4),(5,7),(6,8),(13,24),(14,21),(15,22),(16,23)], [(5,6),(7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,2),(3,4),(5,7),(6,8),(9,19),(10,18),(11,17),(12,20),(13,24),(14,23),(15,22),(16,21)], [(1,22,9),(2,13,18),(3,24,20),(4,15,11),(5,21,19),(6,16,10),(7,23,12),(8,14,17)]])
G:=TransitiveGroup(24,499);
(1 5)(2 4)(3 7)(6 8)(10 16)(12 14)(17 22)(18 20)(19 24)(21 23)
(1 8)(2 7)(3 4)(5 6)(17 24)(18 21)(19 22)(20 23)
(1 2)(3 6)(4 5)(7 8)(9 15)(10 16)(11 13)(12 14)
(1 2)(3 4)(5 6)(7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 2)(3 5)(4 6)(7 8)(9 11)(13 15)(17 21)(18 24)(19 23)(20 22)
(1 9 19)(2 11 22)(3 12 18)(4 14 20)(5 16 23)(6 10 21)(7 13 24)(8 15 17)
G:=sub<Sym(24)| (1,5)(2,4)(3,7)(6,8)(10,16)(12,14)(17,22)(18,20)(19,24)(21,23), (1,8)(2,7)(3,4)(5,6)(17,24)(18,21)(19,22)(20,23), (1,2)(3,6)(4,5)(7,8)(9,15)(10,16)(11,13)(12,14), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,2)(3,5)(4,6)(7,8)(9,11)(13,15)(17,21)(18,24)(19,23)(20,22), (1,9,19)(2,11,22)(3,12,18)(4,14,20)(5,16,23)(6,10,21)(7,13,24)(8,15,17)>;
G:=Group( (1,5)(2,4)(3,7)(6,8)(10,16)(12,14)(17,22)(18,20)(19,24)(21,23), (1,8)(2,7)(3,4)(5,6)(17,24)(18,21)(19,22)(20,23), (1,2)(3,6)(4,5)(7,8)(9,15)(10,16)(11,13)(12,14), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,2)(3,5)(4,6)(7,8)(9,11)(13,15)(17,21)(18,24)(19,23)(20,22), (1,9,19)(2,11,22)(3,12,18)(4,14,20)(5,16,23)(6,10,21)(7,13,24)(8,15,17) );
G=PermutationGroup([[(1,5),(2,4),(3,7),(6,8),(10,16),(12,14),(17,22),(18,20),(19,24),(21,23)], [(1,8),(2,7),(3,4),(5,6),(17,24),(18,21),(19,22),(20,23)], [(1,2),(3,6),(4,5),(7,8),(9,15),(10,16),(11,13),(12,14)], [(1,2),(3,4),(5,6),(7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,2),(3,5),(4,6),(7,8),(9,11),(13,15),(17,21),(18,24),(19,23),(20,22)], [(1,9,19),(2,11,22),(3,12,18),(4,14,20),(5,16,23),(6,10,21),(7,13,24),(8,15,17)]])
G:=TransitiveGroup(24,500);
Polynomial with Galois group C23⋊2D4⋊C3 over ℚ
action | f(x) | Disc(f) |
---|---|---|
12T104 | x12-6x10+12x8-8x6-3x4+6x2-1 | -224·316 |
Matrix representation of C23⋊2D4⋊C3 ►in GL6(ℤ)
-1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | -1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | -1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
G:=sub<GL(6,Integers())| [-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,-1,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0] >;
C23⋊2D4⋊C3 in GAP, Magma, Sage, TeX
C_2^3\rtimes_2D_4\rtimes C_3
% in TeX
G:=Group("C2^3:2D4:C3");
// GroupNames label
G:=SmallGroup(192,194);
// by ID
G=gap.SmallGroup(192,194);
# by ID
G:=PCGroup([7,-2,-3,-2,2,-2,2,-2,672,1640,135,604,1011,934,521,304,851,1524]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^4=e^2=f^3=1,e*a*e=a*b=b*a,a*c=c*a,d*a*d^-1=a*b*c,f*a*f^-1=e*c=c*e,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f^-1=d^2,c*d=d*c,f*c*f^-1=b,e*d*e=d^-1,f*d*f^-1=a*b*c*d^-1*e,f*e*f^-1=c*d*e>;
// generators/relations
Export